Wavefront Sensors

Don’t let wavefront aberrations delay your next discovery. Let us to help you find the best solution to move your research forward.

A schematic diagram of the adaptive optics system described

Wavefront Sensor

Traditional adaptive optics systems comprise three main elements:

Wavefront sensor: measures the phase aberration in the optical wavefront

Deformable mirror: adjusts its position to correct for the aberration

Control system: receives measurements from the sensor and calculates the corrective movement of the deformable mirror

Wavefront Sensor and Control System, Deformable Mirrors

Wavefront Sensor and Control System

The Shack-Hartman Sensor is the most common wavefront sensor used today due to its simplicity and manufacturability. Using an array of miniature lenses called “lenslets,” the sensor splits light into a number of small beams which is then focused onto a CCD camera. As the incident wavefront is aberrated by the lenslet, the focused spot on the CCD camera moves. Through simple geometry using the displacement of the focused spot and the focal length of the lenslet, the local tilt of the wavefront is calculated by the control system—typically, a computer and the control algorithm software. The control system then calculates the shape required to compensate the wavefront and sends the information to the wavefront corrector.

Shack Hartmann Wavefront Sensor

Deformable Mirrors

Compensating a wavefront brings us to the truly adaptive element in adaptive optics, the wavefront corrector. The most prevalent technology used for this function is a deformable mirror – a thin, flexible, reflective surface whose shape is controlled through a variety of competing technologies. The selection criteria for a deformable mirror is application based. Fundamental specifications for deformable mirror systems are spatial resolution, spatial frequency, speed, stroke, and surface finish.

Spatial resolution is a measure of the corrective capabilities of a deformable mirror, i.e. the degree of wavefront complexity for which the deformable mirror is capable of correcting. Spatial resolution is determined by actuator count as well as inter-actuator coupling (the influence of a deformed actuator upon its neighbors). Current technology ranges from 19 actuators (entry-level membrane deformable mirror) to over 4000 actuators (MEMS deformable mirrors), with inter-actuator couplings ranging from 0-100%.

Stroke describes the maximum actuator deflection for a given deformable mirror and presents a significant tradeoff with resolution. Low-resolution bimorph and ferromagnetic deformable mirrors can provide stroke as high as 50 µm, but are only suitable for simple, low order aberrations. Meanwhile, most microscopicvision science, and laser shaping applications require 1 to 4 µm stroke and higher-order correction, which is achievable with high-resolution MEMS deformable mirrors.

140 actuator BMC DM with wiring
Let's work together. We’ll help you find the right solution for your application.

We believe it should be easy for you to find the best solution to your wave sensor needs. We’re the partner that will give you the solution. Let us worry about choosing the best solution for your wave senor needs so you can focus on moving your research forward. Contact us today.